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Abstract. A non-commutative version of the usual electro-weak theory is constructed. We discuss how to
overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote
by U�(n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative
QED are quantized to just 0, ±1. We show how the latter problem with charge quantization, as well as with
the gauge group, can be resolved by taking the U�(3) × U�(2) × U�(1) gauge group and reducing the extra
U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the
standard model by specifying the proper representations for the entire particle content of the theory, the
gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard
model (NCSM). In addition, among several peculiar features of our model, we address the inherent CP
violation and new neutrino interactions.

1 Introduction

Undoubtedly, the usual particle physics standard model
is among the most successful physical theories and so far
it has passed all the precision tests and is capable of ex-
plaining all the present data, or those phenomena and
concepts which can be accommodated within its mathe-
matical structure, such as quarks and neutrino mass and
mixing. The only unobserved, or perhaps theoretically less
elegant, part is the Higgs sector.

Although being experimentally so successful, perhaps
its only weak point is the large number of theoretically un-
determined parameters. Mainly motivated by this point,
there has been a lot of work devoted to formulating the-
ories beyond the standard model, through which one can
find some relations between the parameters of the stan-
dard model and in this way reduce the number of free
parameters. Among these very different attempts one can
mention the grand unified theories (GUTs) and the mini-
mal supersymmetric standard model (MSSM).

In this work we construct a model beyond the stan-
dard model from a completely different perspective, i.e.
the standard model on a non-commutative space-time, the
non-commutative standard model (NCSM). Non-commu-
tative space-time can be presented by the so-called Moyal
plane, with the coordinates and their conjugate momen-
tum operators, x̂µ, p̂ν , satisfying

[x̂µ, x̂ν ] = iθµν , θµν = −θνµ ,
[x̂µ, p̂ν ] = i�ηµν , [p̂µ, p̂ν ] = 0 . (1.1)

In the above, θµν , the non-commutativity parameter
(usually taken as a constant tensor), is of dimension of
(length)2. As it is seen, the Lorentz symmetry is lost, but
we expect to find the manifest Lorentz symmetry at low
energies, E2θ � 1 (at least if we ignore the quantum
corrections), where θ is the dimensionful scale of the θµν

tensor. Then, one should define field theory on the non-
commutative space-times, non-commutative field theory.
To pass to non-commutative field theories, it is enough to
replace the usual product of the fields in the (commuta-
tive) action, by the Moyal �-product1:

(f � g)(x) = e
i
2 θµν∂xµ ∂yν f(x)g(y)

∣∣∣
x=y

(1.2)

= f(x)g(x) +
i
2
θµν∂µf∂νg + O(θ2) .

Introducing this �-product into the actions has some non-
trivial consequences both at the classical (tree) and quan-
tum (loop) levels.

At the classical level, among these consequences we
would like to mention the restrictions it imposes on the
gauge theories: only the non-commutative U(n) gauge the-
ories have a simple non-commutative extension and we
cannot even have non-commutative SU(n) gauge theo-
ries. Furthermore, the representations for the u�(n) al-
gebra are restricted to those of n × n hermitian matrices

1 We note that this recipe cannot be used for gauge theories
other than U�(n)
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[1]. Also, non-commutativity imposes severe restrictions
on the fermions and their charges [1,2]. We shall discuss
these points in more detail in the next section. The other
interesting classical consequence of non-commutativity is
the inherent C and CP violation in the non-commutative
field theories [3].

As for the quantum level, we can mention the loop
calculations and renormalizability discussions. During the
past two years there have been a large number of articles
on that subject (see, e.g., [4–11,13,14])2. From all these
results here we mention only two.
(i) In general, the unitarity of non-commutative field the-
ories is related to having a space-like non-commutativity,
i.e. θµνθ

µρ as a matrix should be positive definite [16];
(ii) an intrinsic and general feature of the non-commu-
tative field theories is the so-called IR/UV mixing [7]: al-
though we can usually remove the UV divergences in the
non-commutative version of the usual commutative renor-
malizable theories by adding proper counter-terms (and
hence the theory is UV renormalizable), upon sending the
UV cut-off to infinity we are left with some new IR diver-
gences. There have been three proposals to resolve this IR
divergence problem [7,8,17,18], among which are the non-
commutative hard resummation [17], and/or introducing
a new way of regularization [18]; we believe that, one way
or the other, this problem can be removed.

In particular we would like to point out that the non-
commutative gauge theories [6,14], the non-commutative
version of real φ4 theory [7,9,10] as well as the complex
φ4 theory [11] and the non-commutative version of QED
(NCQED) [2,12] have been shown to be one-loop renor-
malizable.

There have also been many attempts to study the phe-
nomenological consequences of non-commutative field the-
ories (by taking the space-time to be a non-commutative
Moyal plane)3. However, most of them are aimed at ac-
commodating the extra non-commutative contributions
within the error bars of the present data [19,26,27]. A
rigorous and robust mathematical framework which is not
suffering from the charge quantization problem [1,2] and
the extra U(1) factors (in the U�(n) gauge theory com-
pared to SU(n)) [13,14] has not yet been constructed.
This is exactly what we would like to do in this paper.
We will show how, by fixing the gauge group of the non-
commutative standard model (NCSM) to U�(3)×U�(2)×
U�(1) and reducing the two extra U(1) factors through the
appropriate Higgs particles, the number of possible par-
ticles in each family (there are six: left-handed leptons,
right-handed charged leptons, left-handed quarks, right-

2 For a string theory survey on non-commutative issues, see
[15]

3 Non-commutative geometry (in a general sense) has been
previously used to build a theory beyond the standard model;
see e.g., [28]. Recently within the Connes formulation, the
unimodularity condition has been used to obtain the hyper-
charges for the fermions [29]. However, these models are based
on a very different approach than ours, where the fields evolve
in almost commutative spaces (the space-time is commutative
with a minimal non-commutativity in the internal space)

handed up quarks, right-handed down quarks and Higgs)
is fixed, as well as their hyper-charges (and hence the elec-
tric charge). We would like to emphasize that the existence
of the Higgs particle, in our model, is an unavoidable out-
come. As a consequence, two extra massive gauge bosons
and two extra massive scalar particles will appear.

In order to make a distinction between the two types
of scalar fields which we have: the one(s) which we use
for the reduction of the extra U(1) symmetries and the
usual standard model Higgs, which is used for breaking the
electro-weak symmetry, we call the former one “Higgsac”
and keep the “Higgs” for the usual Higgs doublet4.

This paper is organized as follows. In Sect. 2, we re-
view the problems and restrictions for constructing a non-
commutative version of the standard model and discuss a
mechanism to resolve these problems. In Sect. 3, in order
to show how our procedure works in practice, we work out
the details of the reduction of the extra U(1) factor(s) and
show how this also resolves the charge quantization prob-
lem, for the particular case of the non-commutative ver-
sion of QCD + QED which can be denoted by NC(SUc(3)
× U(1)) gauge theory. In Sect. 4, which in a sense is the
main part of the paper, we construct the NCSM. We start
with the U�(3)×U�(2)×U�(1) gauge theory and reduce
the two extra U(1) factors by introducing two extra Hig-
gsac particles in proper representations. Then, we proceed
with introducing matter fields and discuss in detail how
the hyper-charges are fixed to those of the usual standard
model.

In Sect. 5, we work out the details of the electro-weak
symmetry breaking. In this way we define the photon, Z
and W± fields. Then, in the fermionic part, we discuss
the interaction terms for the fermions and compare them
with the usual standard model as well as the correspond-
ing Yukawa couplings and mass terms. In Sect. 6, among
several new features of NCSM, we mention the neutrino
dipole moment and the non-commutative correction to the
weak-mixing angle, θW, or more precisely to the ρ param-
eter and m2

W

m2
Z

ratio. In this way we impose some upper
bounds on the masses of two extra massive gauge boson
as well as on the non-commutativity parameter. Finally
in Sect. 7, we discuss some of the open questions. A more
detailed analysis of the normal sub-groups of U�(n) as
well as the Higgsac symmetry reduction is gathered in the
appendices.

2 The major problems in constructing NCSM
and the proposal to resolve them

In this section we recapitulate the problems one encoun-
ters in building a non-commutative version of the standard
model and present the way out of them. These problems

4 The suffix “ac” stems either from the word “acommutative”
(i.e. not commutative) or from the diminutive suffix in Persian,
similar to “ino” in Italian, and hence “Higgsac” is equivalent
to “small Higgs”. We use this terminology to distinguish these
scalars from the usual Higgs and also the higgsinos of MSSM
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Table 1. LH is for left handed, RH for right handed

Particles Electric charge SU(2) weak charge Hyper-charge Color charge

LH electron −1 − 1
2 −1 none

LH neutrino 0 + 1
2 −1 none

RH electron −1 0 −2 none

LH up quark + 2
3 + 1

2 + 1
3 has

LH down quark − 1
3 − 1

2 + 1
3 has

RH up quark + 2
3 0 + 4

3 has
RH down quark − 1

3 0 − 2
3 has

Higgs 0 − 1
2 +1 none

and restrictions, which we classify in three sets, are all im-
posed by the mathematical (group theoretical) structure
of non-commutative gauge theories. However, first let us
review some related information about the usual standard
model. The usual standard model in the gauge bosons sec-
tor contains eight (massless) gluons, one (massless) photon
and three (massive) weak gauge bosons. We have collected
the information about the matter fields and their charges
in Table 1.

Now we are ready to discuss the three major problems.

2.1 Problems

(i) Charge quantization problem

As was shown in [2], the charges for the matter fields cou-
pled to the U�(1) theory must be quantized to just 0,±1,
depending on the representation of the particles. This is
due to the fact that in a sense the U�(1) theory is a non-
Abelian theory (for a more detailed discussion we refer
to [2,1]). Now, we face the first and the most challenging
obstacle: As we explicitly see from Table 1, not all the
electric or hyper-charges of the particles fulfill this condi-
tion. So, not only are we not able to construct NCQED,
but going to the electro-weak level (and considering the
hyper-charges) makes the problem worse and we face a
larger variety of non-quantized hyper-charges.

(ii) The extra gauge fields

According to non-commutative group theoretical argu-
ments (e.g. see [1]), the U�(1) sub-group of U�(n) is not
a normal sub-group and therefore mathematically it is
not possible to define a non-commutative SU(n) alge-
bra (or group) by simple insertion of �-products. How-
ever, even if we ignore this mathematical fact and drop
the corresponding U�(1) gauge field in the U�(n) gauge
theory action, the remaining theory is not renormalizable
[13,14]. Consequently, as a direct generalization of the
SUc(3) × SUL(2) × U(1) gauge theory, one cannot avoid
two extra U(1) factors, i.e., two extra gauge fields appear-
ing in NCSM.

(iii) The no-go theorem

In [1], based on group theoretical arguments, we have
proved a no-go theorem stating that
(a) the local u�(n) algebra only admits the irreducible n×n
matrix representation. Hence the gauge fields are in n×n
matrix form, while the matter fields can only be in funda-
mental, adjoint or singlet states5;
(b) for any gauge group consisting of several simple-group
factors, the matter fields can transform non-trivially un-
der at most two non-commutative group factors. In other
words, the matter fields cannot carry more than two non-
commutative gauge group charges.

The restriction (a) is actually what we have already
had in the usual standard model, i.e. all the gauge bosons
as well as the matter fields are living in the representa-
tions which are also allowed in the non-commutative case.
However, as for criterion (b), it is clear from Table 1 that
the particles coupled to gluons, the quarks, carry three dif-
ferent charges, i.e. hyper-charge, weak SU(2) charge and
color charge.

Before explaining our procedure to resolve the above-
mentioned problems, however, we would like to make a
comment on the no-go theorem. The arguments of [1], and
in particular part (b), are based on the invariance of the
action under finite gauge transformations. In other words,
to define the gauge transformation for the matter fields
we have considered the group factors, while in principle it
is also possible to define these gauge transformations only
with the algebra (i.e. the infinitesimal gauge transforma-
tions), in which case one can relax the condition (b)6. For
the usual Lie groups and algebras where the group ele-
ments are obtained through the simple exponentiation of
the algebra elements, of course the infinitesimal and finite
gauge transformations result in the same physics (at least
for Yang–Mills theories). However, this is not always the
case, a famous example being the Chern–Simons theories
in which, although the theory is invariant under infinites-
imal gauge transformations, the invariance under finite
gauge transformations is not immediate. As a result, to

5 Within the superfield approach similar arguments have
been presented in [30]

6 We would like to thank L. Bonora for a discussion of this
point
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have a well-defined quantum Chern–Simons theory, the
level should be quantized, which in turn is an implication
of finite gauge transformations. For the non-commutative
groups when the gauge group involves more than one sim-
ple U�(n) factor, the relation between the algebra and the
corresponding group is not given by a simple star exponen-
tiation [1]. We believe that it is the invariance under the
finite gauge transformations which is indeed fundamen-
tal, and of course this also covers the infinitesimal gauge
invariance.

2.2 The way out

To show the way out of the above mentioned problems we
recall two facts:
(I) In the usual physical models, there is always a U(1)
factor together with the SU(n) factors, i.e. SUc(3)×Uq(1)
for QCD + QED and SUc(3) × SUL(2) × UY (1) for the
standard model.
(II) If we define the photon (or the hyper-photon) through
a linear combination of two (or three) U�(1) fields, al-
though the charge for each U�(1) factor is quantized re-
strictively to 0 and ±1, there is a chance to find a higher
variety of charges (but still quantized). Furthermore, this
shows a way out of the implications of part (b) of our
no-go theorem.

In agreement with our hopes there is a standard and
well-known procedure to implement the above two facts:
the Higgs symmetry-breaking scenario. Hence our recipe
is to start with U�(3)×U�(1) (or U�(3) × U�(2) × U�(1))
and reduce two (or three) U(1) factors to one U(1) factor,
through one (or two) proper Higgsac field(s). We would
like to emphasize that in order to reduce a symmetry
through the Higgs mechanism it is necessary that the
Higgs is in a non-singlet representation of that symme-
try. Therefore, in our case, the Higgsac field(s) should
be charged only under the U(1) sub-group of U�(3) (and
U�(2)) as well as under the individual U�(1). Indeed the
U�(n) group enjoys the property of having the needed U(1)
normal sub-group, which here is denoted by Un(1). (For
the definition of the Un(1) sub-group see Appendix A.)

In Sects. 3 and 4, we will explicitly and in detail show
how the above observation works and how tightly it fits
into the existing matter content of the standard model.

3 The non-commutative QED + QCD

To build the non-commutative version of the SUc(3) ×
U(1) gauge theory, first we need to introduce the gauge
group which will be denoted by NC(SU(3) × U(1)). In
order to achieve this goal and clarify the notation we need
to describe the structure of the group U�(n) in more detail.
The U�(n) stands for the usual non-commutative version
of U(n) obtained by insertion of the �-product between
the U(n) matrix valued functions. Consequently, all U�(n)
matrix elements are power series in θ. Taking this into
account, the U�(n) has two invariant (normal) sub-groups:

(1) The group NCSU(n) obtained from a �-product of
SU(n) matrix valued functions (which do contain a U(1)
part, however, at least linear in θ so that in the limit θ → 0
it reduces to the usual gauge group SU(n)). Therefore
one can define the factor-group Un(1) = U�(n)/NCSU(n).
Note that Un(1) is a commutative Abelian sub-group;
(2) the Un

� (1) sub-group, obtained by the action of U�(n)
on its U�(1) sub-group. This U�(1) sub-group is generated
by star exponentiation of the trace of u�(n) algebra ele-
ments, i.e. exp�(iTrλ)1n×n, λ ∈ u�(n), where the trace
is taken over the n × n matrices. More explicitly, if h ∈
the U�(1) sub-group and g ∈ U�(n), then the elements of
Un

� (1) are of the form of g � h � g−1. We stress that this
U�(1) is not an invariant sub-group whereas Un

� (1) is; and
we emphasize that it is the factor-group Un(1) which is
used in our standard model construction, while the other
invariant sub-group, Un

� (1), is not used throughout this
paper. Also note that both of the NCSU(n) and Un

� (1)
sub-groups should be understood as a power series in θ.
The details of the sub-group construction are given in Ap-
pendix A.

To obtain the NC(QED + QCD) we start with the
U�(3)×U�(1) gauge theory, establish the particle content
and the representations, give the gauge transformations
and write the gauge-invariant action. Subsequently, by a
properly chosen Higgsac boson, we reduce the two exist-
ing U(1) factors to a single U(1) gauge symmetry, or, more
precisely, the gauge group is reduced to NC(SU(3)×U(1)).
The final U(1) factor will be proven to correspond to
the non-commutative version of QED. Finally, we shall
address the new features and interactions of NC(QED+
QCD), like CP violation, new “multi-photon” interactions
and photon–gluon interactions.

3.1 The field content of the model; fixing the
conventions

In the following, we shall fix our notations and also point
out the fact that the �-product will be omitted everywhere
from now on, and unless mentioned explicitly, it is under-
stood that the �-product is there.

The pure U�(3)×U�(1) theory is described by one gauge
field, Bµ, valued in the u�(1) algebra and the u�(3)-valued
gauge fields:

Gµ(x) =
8∑

A=0

GA
µ (x)TA . (3.1)

According to [1], the gauge fields corresponding to u�(3)
are necessarily in a 3 × 3 matrix form, because no other
representation for the u�(3) algebra is possible. As a result,
we can take the generators T a, a = 1, 2, · · · , 8 to be the
Gell-Mann matrices, while T 0 = 13×3.

If we denote the elements of U�(1) by v(x) and the
elements of U�(3) by U(x), we can write the finite local
transformations of the gauge fields as

Bµ → vBµv
−1 +

i
g1
v∂µv

−1 ,
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Gµ → UGµU
−1 +

i
g3
U∂µU

−1 . (3.2)

Then the gauge field strengths

Bµν = ∂[µBν] + ig1[Bµ, Bν ]� ,
Gµν = ∂[µGν] + ig3[Gµ, Gν ]� (3.3)

will transform as Bµν → vBµνv
−1 and Gµν → UGµνU

−1,
leaving the action of the U�(3)×U�(1) Yang–Mills theory,

SNCYM = −1
4

∫
d4x[BµνB

µν + Tr(GµνG
µν)] , (3.4)

invariant. A full account of these issues, along the lines of
the scope of this paper, is given in [1,14].

As for the matter content of the U�(3)×U�(1) theory,
the number of independent charged particles that can oc-
cur in this model, according to the no-go theorem [1], is
1
22× (2+1) = 3, since the number of simple-group factors
is two. We take these particles to be the electron (in the
anti-fundamental representation of U�(1)), the up quark
(in the fundamental representation of U�(1) and the anti-
fundamental representation of U�(3)) and the down quark
(in the anti-fundamental representation of U�(3)). Then
the gauge transformation properties of the fermions un-
der the U�(3)×U�(1) gauge group are

ψe(x) → ψe(x)v−1(x) ,
ψu(x) → v(x)ψu(x)U−1(x) ,
ψd(x) → ψd(x)U−1(x) . (3.5)

The gauge-invariant action corresponding to this U�(3)
×U�(1) model is

S =
∫

d4x

[
ψ̄eγ

µD1
µψe + ψ̄uγ

µD1+3
µ ψu + ψ̄dγ

µD3
µψd

− 1
4
BµνBµν − 1

4
Tr(GµνGµν)

]
. (3.6)

The covariant derivatives entering (3.6) are

D1
µ = ∂µ − i

2
g1Bµ , (3.7)

D3
µ = ∂µ − i

2
g3G

′0
µ − i

2
g3G

a
µT

a , (3.8)

D1+3
µ = ∂µ +

i
2
g1Bµ − i

2
g3G

′0
µ − i

2
g3G

a
µT

a . (3.9)

For a reason that will become clear in a moment, we have
denoted the zeroth component of the U�(3) gauge field by
G

′0
µ .

Still, this is not NC(QCD + QED), but a theory that
suffers from the charge quantization problem. In order to
cure it, we use the Higgs procedure for reducing the extra
U(1) factors of U�(3)×U�(1) to a single U(1), which will
exhibit the properties of a true non-commutative version
of QED in the coupling of the non-commutative photon
to the fermionic fields.

The reduction of symmetry has to be done through a
proper Higgsac field, i.e. a scalar particle that is charged
under those groups (or sub-groups) that we intend to re-
duce. In this case, the scalar field has to be charged under
the U1(1) and U3(1) invariant sub-groups of the U�(1) and
U�(3) factors. The gauge transformation undergone by the
symmetry-breaking scalar, Higgsac field, is

Φ(x) → U1(x)Φ(x)v−1(x) , (3.10)

where U1(x) is the θ-independent phase factor of U3(1)
and v(x) ∈ U1(1) (for more details see Appendix A). We
should stress that Φ(x) is θ-independent and in (3.10) the
usual product (and not the �-product) should be used.
Since the NCSU(3) and hence U3(1) sub-groups should be
understood as power series expansions in θ, the symmetry
reduction problem should be investigated systematically
in the same power series. We stress that the U1(1) and
U3(1) phase factors are U�(3)×U�(1) invariant. The details
of the symmetry reduction are given in Appendix B.

The only gauge-invariant terms introduced in the
gauge-invariant action by the presence of the scalar field
are

(D1+1
µ Φ)†(D1+1

µ Φ) +m2Φ†Φ− f

4!
(Φ†Φ)2 , (3.11)

with the covariant derivative given by

D1+1
µ = ∂µ +

i
2
3g3G

′0
µ − i

2
g1Bµ , (3.12)

where by G
′0, B in the above we only mean the θ-in-

dependent parts of the corresponding gauge fields. These
θ-independent parts are those which transform properly
under U�(3) × U�(1). Note that in (3.11) and (3.12) the
usual product of functions should be used.

Applying the usual Higgs mechanism, we shall obtain
a massive gauge boson, G0

µ, whose mass term in the La-
grangian is

1
4
(3g3G

′0
µ − g1Bµ)2φ2

0 = N2(G0
µ)2φ2

0, (3.13)

where N = 1
2

√
g2
1 + (3g3)2 is a normalization factor and

φ0 is the vacuum expectation value for the scalar field.
Actually, in order to write (3.13), we have performed a
rotation in the (Bµ, G

′0
µ ) plane by the angle δ13,

tan δ13 =
g1
3g3

, (3.14)

so that

G0
µ = cos δ13G

′0
µ − sin δ13Bµ,

Aµ = sin δ13G
′0
µ + cos δ13Bµ , (3.15)

where Aµ is the (massless) non-commutative photon, i.e.
the gauge field of the residual U(1) symmetry. The recip-
rocal of this rotation is given by

G
′0
µ = cos δ13G0

µ + sin δ13Aµ ,

Bµ = − sin δ13G0
µ + cos δ13Aµ . (3.16)
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As desired the Lagrangian (3.23) is U�(3)×U�(1) gauge
invariant. However, the Higgsac field may interact with
other matter fields only indirectly, via the θ-independent
parts of the corresponding gauge fields. Here we only in-
vestigate these effects in the leading order. Therefore in
this leading order the theory should be treated as an “ef-
fective theory” for energies lower than the non-commu-
tativity scale, which, as we will discuss, can be as low as
TeV. From this point of view our model is an effective
theory up to the TeV scale. The calculation of higher θ-
corrections would require a more detailed analysis which
is postponed to future works.

3.2 Reduction of the U�(1) symmetries:
a solution to the charge quantization problem

Now we show that this Higgs mechanism has indeed
brought us to the NC(QCD + QED), by curing the charge
quantization problem that plagues the usual U�(1) gauge
theory. To this end, we show that the fermions of the
U�(3)×U�(1) theory couple to the massless gauge boson of
the residual U�(1), Aµ, through the usual electric charges
(see Table 1).

For the electron, the coupling to Aµ emerges from the
first term of (3.6), taking into account (3.16),

ψ̄eγ
µD1

µψe = ψ̄eγ
µ∂µψe − i

2
g1ψ̄eγ

µψeBµ (3.17)

= ψ̄eγ
µ∂µψe − i

2
g1 cos δ13ψ̄eγ

µψeAµ + · · · ,

where the dots indicate the coupling to the massive gauge
boson, G0

µ. We would like to remind the reader that, al-
though it is not shown explicitly, the products between
the fields are all performed by the Moyal star product.

As we want the term relevant for the coupling of the
electron to the gauge field Aµ to be proportional to the
electric charge of the electron, i.e. −e, we define e as

1
2
g1 cos δ13 = e . (3.18)

A similar reasoning for the down quark will give

ψ̄dγ
µD3

µψd = ψ̄dγ
µ∂µψd − i

2
g3ψ̄dγ

µψdG
′0
µ

− i
2
g3ψ̄dγ

µψdG
a
µT

a

= ψ̄dγ
µ∂µψd − i

2
g3 sin δ13ψ̄dγ

µψdAµ

− i
2
g3ψ̄dγ

µψdG
a
µT

a + · · · , (3.19)

from which we find the condition

−1
2
g3 sin δ13 = qd , (3.20)

where qd is the electric charge of the down quark. However,
using (3.14) and (3.18) we find that

qd = −1
3
e , (3.21)

which is the correct relation.
For the up quark,

ψ̄uγ
µD1+3

µ ψu = ψ̄uγ
µ∂µψu +

i
2
g1ψ̄uγ

µBµψu (3.22)

− i
2
g3ψ̄uγ

µψuG
′0
µ − i

2
g3ψ̄uγ

µψuG
a
µT

a

and the relevant terms for the coupling with Aµ, having
in view (3.16), will be

Lu−Aµ =
i
2
g1 cos δ13ψ̄uγ

µAµψu − i
2
g3 sin δ13ψ̄uγ

µψuAµ

=
i
2
(g1 cos δ13 − g3 sin δ13)ψ̄uγ

µAµψu

− i
2
g3 sin δ13ψ̄uγ

µ[ψu, Aµ]� , (3.23)

and therefore

1
2
(g1 cos δ13 − g3 sin δ13) = qu . (3.24)

Upon using the definition of e in (3.18) and (3.14), we find

qu = +
2
3
e . (3.25)

As we see, the charges for the up and down quarks have
come out of the mathematical structure of our model and
they have not been put by hand. In fact, the only allowed
(possible) charges for the particles which also couple to
the gluons are 1

3 and 2
3 in units of electron charge. In

other words, the representation fixes completely the elec-
tric charges. The reader may find some more details on
the symmetry reduction in the fermionic sector in Ap-
pendix C.

3.3 Discussions of the model; some new features

Although we do not analyze the NC(SUc(3)×U(1)) model
described previously in detail, we would like to point out
some of the important consequences and a more detailed
survey is postponed to future works.

(1) The renormalizability

Noting the fact that in order to construct our model we
started with a U�(3)×U�(1) gauge theory plus all possi-
ble charged matter fields, this theory is (UV) renormaliz-
able [2,14]. In addition we have used a (complex) scalar
field coupled to the two commutative U(1) factors with a
(φ†φ)2 potential and it is well known that this scalar the-
ory is renormalizable. On the other hand, it is well known
that the Higgs scenario does not spoil the renormalizabil-
ity of the theory. Hence, altogether we expect our theory
to be renormalizable.
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(2) The photon–photon and photon–gluon interactions

Having the definition of physical fields, Aµ, G
0
µ, in terms

of Bµ, G
′0
µ , we can easily read off the interaction of the

photon with itself and also with other gauge bosons. In-
serting (3.16) into the action (3.4), there are some imme-
diate results.
(i) The three- and four-photon vertices are not exactly as
dictated by a simple U�(1) theory. The coefficient (cou-
pling) for the Aµ–Aµ–Aµ term is 2

3e(1 + 2 sin2 δ13), while
for the Aµ–Aµ–Aµ–Aµ term it is 4

3e
2(1 + 2 sin2 δ13);

(ii) there are Aµ–G0
µ–G0

µ, Aµ–Aµ–G0
µ and Aµ–Aµ–G0

µ–G0
µ

interaction terms;
(iii) the usual gluons (the Ga

µ, a = 1, · · · , 8 fields) also
couple to the photon, Aµ.

As a side effect of the above arguments it is likely that
they show a way out of the standing problem of a simple
U�(1) gauge theory: the negative β-function [2]. It is an
experimentally confirmed fact that the QED coupling, α,
increases as we increase the energy:

α|
E∼10 eV � 1

137.036
, α|

E∼mZ
� 1

128.9
. (3.26)

On the other hand, a direct one-loop calculation for the
simple U�(1) gauge theory shows a negative β-function.
However, according to our arguments one should keep
in mind that in the NC(SUc(3) × U(1)) model discussed
above, the photon is also involved in some interactions
other than those of the U�(1) theory. Also, the number of
charged particles coupled to the photon is now increased,
as the charge quantization problem of the quarks has been
eliminated. This may show a way to resolve the negative
β-function problem.

(3) The fermionic interactions

Here we would like only to mention the inherent CP vi-
olation because of the �-product present in the fermion–
photon coupling terms. As discussed in [3], it is impor-
tant that the photon appears on the right-hand side (or
left-hand side) of the ψ field, like the up quark (or elec-
tron and down quark). Consequently, the anti-particle of
the up quark (which carries − 2

3e charge) would be cou-
pled to a photon from the left-hand side. More intuitively,
the non-commutative particles, besides the usual electric
charges, also carry higher-pole (including dipole) moments
[31,12]; the anti-particle of any particle not only should
carry the opposite charge, but also the opposite dipole
moment. Since these dipole moments are proportional to
the momentum [31,12], the theory would not be CP in-
variant, while CPT is conserved [3].

Finally, we would like to note that in the up quark–
photon interaction term (3.23), besides the usual ψ̄γµψAµ

term, there is a Moyal bracket term which is not there
for electron and down quark. Group theoretically, this is
related to the fact that the up quark carries two different
charges, while the electron and down quark carry only one
type of charge.

4 The non-commutative standard model
(NCSM)

Having worked out the details of the U�(3)×U�(1) gauge
theory, the symmetry reduction scenario and the charges
of the particles as a warm up, we are now ready to present
our formulation of NCSM. In this section, applying the
same machinery, but for the group U�(3)×U�(2)×U�(1) we
construct the NCSM. First we show the reduction of three
U(1) factors to the hyper-charge U(1) and discuss that,
as a result, two of the corresponding U(1) fields become
massive. Then, we proceed with the matter fields and show
that their hyper-charges are fixed to those of the usual
standard model (given in Table 1).

4.1 The gauge group

The pure U�(3)×U�(2)×U�(1) theory is described by one
gauge field, Bµ, valued in the u�(1) algebra, the u�(2)-
valued gauge fields:

Wµ(x) =
3∑

I=0

W I
µ(x)σI , (4.1)

and the u�(3)-valued gauge fields:

Gµ(x) =
8∑

A=0

GA
µ (x)TA . (4.2)

For a similar reason as in the previous section, i.e. accord-
ing to the no-go theorem [1], we take the generators of
the u�(2) algebra as the Pauli matrices σi, i = 1, 2, 3 and
σ0 = 12×2, while the generators of the u�(3) algebra will
be taken as the Gell-Mann matrices T a, a = 1, 2, · · · , 8
and T 0 = 13×3.

In the following we continue to denote the elements of
U�(1) by v(x) and the elements of U�(3) by U(x), while the
elements of U�(2) are denoted by V (x). The local trans-
formations of the gauge fields are of a similar form as (3.2)
and the action

Sgauge fields (4.3)

= −1
4

∫
d4x[BµνB

µν + Tr(WµνW
µν) + Tr(GµνG

µν)]

is gauge invariant.
In order to reduce the three U(1) factors of the U�(3)×

U�(2)×U�(1) theory we should use two scalar particles and
run the Higgs mechanism two times. One single Higgsac
cannot do the task, because the scalar particle used for
reducing a symmetry should be charged under the sym-
metry group we want to reduce. In our case, these symme-
try groups are the U(1) factor-groups of U�(1), U�(2) and
U�(3). Therefore, we begin by first reducing the U(1) sub-
groups of U�(2) and U�(3) to some residual U(1) whose
corresponding (massless) gauge field will be denoted by
B′

µ. Subsequently, this symmetry and the individual U�(1)
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will be reduced to the U(1) corresponding to the hyper-
charge, described by the gauge field Yµ.

Let us start by choosing the first symmetry-reducing
scalar particle with the transformation properties:

Φ1(x) → U1(x)Φ1(x)V −1
1 (x) , (4.4)

where U1 stands for the elements of the U3(1) sub-group
of U�(3) and V1 stands for the elements of the U2(1) sub-
group of U�(2). We note that these sub-groups are con-
structed in the same way as in the previous section and
in (4.4) the products are the usual commutative ones.

The covariant derivative corresponding to this scalar
field is

Dµ = ∂µ +
i
2
3g3G

′0
µ − i

2
2g2W

′0
µ . (4.5)

Note that here the covariant derivative only involves the θ-
independent parts of the corresponding gauge fields. The
Lagrangian for the Φ1 field will acquire the new terms:

(DµΦ1)†(DµΦ1) +m2
1Φ

†
1Φ1 − f1

4!
(Φ†

1Φ1)2 (4.6)

(with no � product), which, as desired, is fully gauge in-
variant (for more details see Appendix A). Through the
Higgs mechanism, we obtain a mass term for the gauge
boson G0

µ:(
3
2
g3G

′0
µ − g2W

′0
µ

)2

φ2
1 = N2

1 (G0
µ)2φ2

1, (4.7)

where N1 =
√
g2
2 +

( 3
2g3
)2 and φ1 =

√
12m2

1
f1

is the vac-
uum expectation value for the Φ1 Higgsac field.

The massive gauge boson G0
µ and the residual massless

U1(1) field, B′
µ, can be defined through a rotation by the

angle δ23,

tan δ23 =
2g2
3g3

(4.8)

in the (W
′0
µ , G

′0
µ ) plane, i.e.

G0
µ = cos δ23G

′0
µ − sin δ23W

′0
µ ,

B′
µ = sin δ23G

′0
µ + cos δ23W

′0
µ , (4.9)

whose reciprocal is

G
′0
µ = cos δ23G0

µ + sin δ23B′
µ ,

W
′0
µ = − sin δ23G0

µ + cos δ23B′
µ . (4.10)

The remaining U1(1) group is a particular sub-group of
U3(1) ×U2(1) obtained through the mixing process. If we
denote the elements of this U1(1) group by s(x), the sec-
ond scalar field, through which we reduce eventually the
symmetry to that of hyper-charge, should transform as

Φ2(x) → s(x)Φ2(x)v−1(x) (4.11)

(with no � product), and hence its covariant derivative,
which only involves the θ-independent parts of the gauge
fields, is given by

Dµ = ∂µ +
i
2
g0B

′
µ − i

2
g1Bµ , (4.12)

where g0 = 2g23g3/
√

(2g2)2 + (3g3)2 is the coupling con-
stant to the residual B′

µ field. Following exactly the same
prescription as before for the Higgs mechanism (i.e. as-
suming the Lagrangian for the Φ2 field to be similar to
that of Φ1, given by (4.6)), we shall end up with a new
gauge boson, W 0

µ , whose mass term in the Lagrangian will
read

1
4
(g0B′

µ − g1Bµ)2φ2
2 = N2

2 (W 0
µ)2φ2

2 , (4.13)

where N2 = 1
2

√
g2
0 + g2

1 and φ2 is the vacuum expectation
value for Φ2. The massive field, W 0

µ , is related to the fields
Bµ, B

′
µ through a rotation in the (Bµ, B

′
µ) plane by the

angle δ11′ :

W 0
µ = cos δ11′B′

µ − sin δ11′Bµ,

Yµ = sin δ11′B′0
µ + cos δ11′Bµ . (4.14)

The inverse of this transformation, which relates W 0 and
Y (the hyper-photon field) to B′ and B, is

B′
µ = cos δ11′W 0

µ + sin δ11′Yµ ,

Bµ = − sin δ11′W 0
µ + cos δ11′Yµ . (4.15)

To summarize, we have reduced the three Un(1) factors
to a single U1(1) through two proper Higgsac fields, Φ1 and
Φ2 (in principle, in two different energy scales); in the end,
instead of the corresponding three U(1) fields, G

′0, W
′0

and B0, we have introduced two massive gauge bosons, G0

and W 0 and the (massless) hyper-photon Y . The initial
and final U(1) gauge fields are hence related by a 3 × 3
rotation matrix R:

 G
′0
µ

W
′0
µ

Bµ


 = R3×3


 G0

µ

W 0
µ

Yµ


 , (4.16)

where

R3×3 = R23 R11′ ; (4.17)

R23 =

( cos δ23 sin δ23 0
− sin δ23 cos δ23 0

0 0 1

)
,

R11′ =

( 1 0 0
0 cos δ11′ sin δ11′

0 − sin δ11′ cos δ11′

)
. (4.18)

It is clear from the form of (4.16) that it does not matter
in which order we reduce the U(1) symmetries.

The masses of the massive gauge bosons depend on the
Φ1 and Φ2 vacuum expectation values:

mG0 =

√
g2
2 +

(
3
2
g3

)2

|φ1| ,

mW 0 =

√(
1
2
g1

)2

+ g2
2 +

(
3
2
g3

)2

|φ2| . (4.19)
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Then it is straightforward to rewrite the action (4.3) in
terms of the physical gauge fields (Ga

µ, W
i
µ, Yµ; G0

µ, W
0
µ).

We still need to define the Z and photon fields out of
them, but we will not work this out here and we postpone
it to the next section, where we discuss the electro-weak
symmetry breaking. However, we would like to comment
that, as we discussed in Sect. 3, the Lagrangian that one
will find for the hyper-photon Yµ (upon insertion of (4.16)
into (4.3)) is not of the form specific for a pure U�(1)
theory.

After the two Higgsac reductions we end up with the
NC(SUc(3) × SUL(2) × UY (1)), where similar to the
NC(QED + QCD) case, this group is in fact a group which
in the θ → 0 limit recovers the usual SM. However, for
non-zero θ it receives some non-commutative corrections.
In fact this algebra is the enveloping algebra of the usual
SUc(3) × SUL(2) × UY (1) algebra defined by insertion of
the star products.

4.2 The matter content

When coupling the matter fields to the U�(3)×U�(2)×
U�(1) theory, we have to keep in mind that, according
to [1] (see (iii) in Sect. 2.1), since we have three simple
factors in our group, we can have only 1

23 × (3 + 1) =
6 types of charged particles, in the fundamental and/or
anti-fundamental representation of the group factors. We
note that the symmetry-reducing scalar particles (Hig-
gsac fields) used in the previous subsection which have to
be charged under U(1) factor-groups of U�(1), U�(2) and
U�(3), are not included among these six types of particles.

Let us now give the gauge transformation properties
of these matter fields, together with their corresponding
covariant derivatives.
(1) Right-handed charged leptons (in anti-fundamental
representation of U�(1)). In this group we consider the
right-handed electron, which transforms as

eR(x) → eR(x) v−1(x) , (4.20)

and hence the corresponding covariant derivative is

D1
µeR(x) = ∂µeR(x) − i

2
g1eR(x)Bµ. (4.21)

(2) Left-handed leptons (in the fundamental representa-
tion of U�(2) and anti-fundamental representation of
U�(1)). Here we shall include the left-handed electron and
its neutrino, in a doublet:

Ψ l
L(x) =

(
ν(x)
e(x)

)
L

. (4.22)

Under the gauge transformations, the doublet transforms
as

Ψ l
L(x) → V (x)Ψ l

L(x) v−1(x) , (4.23)
and therefore the corresponding covariant derivative is

D1+2
µ Ψ l

L(x) = ∂µΨ
l
L(x) +

i
2
g2W

′0
µ Ψ

l
L(x) (4.24)

+
i
2
g2W

i
µσiΨ

l
L(x) − i

2
g1Ψ

l
L(x)Bµ .

(3,4) Right-handed quarks. Here, we choose the right-
handed up quark in the fundamental representation of
U�(1) and anti-fundamental representation of U�(3) and
the right-handed down quark in the anti-fundamental rep-
resentation of U�(3):

uR(x) → v(x)uR(x)U−1(x) ,
dR(x) → dR(x)U−1(x) , (4.25)

with the covariant derivatives

D1+3
µ uR(x) = ∂µuR(x) +

i
2
g1BµuR(x) − i

2
g3uR(x)G

′0
µ

− i
2
g3uR(x)Ga

µT
a , (4.26)

D3
µdR(x) = ∂µdR(x) − i

2
g3dR(x)G

′0
µ − i

2
g3dR(x)Ga

µT
a .

(4.27)
(5) Left-handed quarks. The doublet of left-handed up and
down quarks,

Ψ q
L(x) =

(
u(x)
d(x)

)
L

, (4.28)

are in the fundamental representation of U�(2) and anti-
fundamental representation of U�(3):

Ψ q
L(x) → V (x)Ψ q

L(x)U−1(x) , (4.29)

with the covariant derivative

D2+3
µ Ψ q

L(x) = ∂µΨ
q
L(x) +

i
2
g2W

′0
µ Ψ

q
L(x) +

i
2
g2W

i
µσiΨ

q
L(x)

− i
2
g3Ψ

q
L(x)G

′0
µ − i

2
g3Ψ

q
L(x)Ga

µT
a . (4.30)

(6) The Higgs doublet. We have

Φ(x) =

(
Φ+(x)
Φ0(x)

)
, (4.31)

in the fundamental representation of U�(2),

Φ(x) → V (x)Φ(x) , (4.32)

with the covariant derivative

D2
µΦ(x) = ∂µΦ(x)+

i
2
g2W

′0
µ Φ(x)+

i
2
g2W

i
µσiΦ(x) . (4.33)

We stress that the Higgs field interacts with other matter
and gauge fields directly, i.e. in (4.32) and (4.33) we should
use �-products and the full gauge fields (not only their θ-
independent parts, as is the case for Higgsac fields). We
would also like to remark that the Higgs doublet fits per-
fectly in this picture and also exhausts the possible types
of charged particles allowed by the no-go theorem [1].

Now, let us show how the U�(1) symmetry reduction
solves the hyper-charge quantization problem. This fact
will be made obvious by showing that the coupling of all
matter fields to the massless gauge field Yµ of the residual
U�(1) is realized through the usual hyper-charges of the
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particles (see Table 1). To this end, we consider one by
one the relevant terms of the Lagrangian (i.e. Ψ̄γµDµΨ)
for each type of matter field. In what follows, we denote
the coupling constant to the hyper-charge U�(1) by g′.
The order in which we discuss the different types of fields
is the most convenient one:
(i) Right-handed electron: the coupling to Yµ can be read
off by using (4.15):

ēRγ
µD1

µeR = ēRγ
µ∂µeR − i

2
g1ēRγ

µeRBµ (4.34)

= ēRγ
µ∂µeR − i

2
g1 cos δ11′ ēRγ

µeRYµ + · · · ,
where the dots contain the coupling to the massive gauge
bosons, G0

µ and W 0
µ . As the coupling term should be pro-

portional to the hyper-charge of eR, i.e. −2g′, we define g′
by

1
2
g1 cos δ11′ = g′ . (4.35)

Also, we note that using the definition of the δ11′ mixing
angle (4.14) we have

cot δ11′ =
3g3 2g2

g1
√

(2g2)2 + (3g3)2
, (4.36)

and hence

g′ =
1
2

3g3 2g2√
(2g2)2 + (3g3)2

sin δ11′ . (4.37)

(ii) Right-handed down quark: in the same way as above,
using (4.27) and (4.16), we obtain

d̄Rγ
µD3

µdR

= d̄Rγ
µ∂µdR − i

2
g3d̄Rγ

µdRG
′0
µ − i

2
g3d̄Rγ

µdRG
a
µT

a

= d̄Rγ
µ∂µdR − i

2
g3 sin δ23d̄Rγ

µdRB
′
µ − · · · (4.38)

= d̄Rγ
µ∂µdR − i

2
g3 sin δ23 sin δ11′ d̄Rγ

µdRYµ − · · ·
From this one can readily find the hyper-charge of the
right-handed down quark, YdR :

g3 sin δ23 sin δ11′ = −YdR . (4.39)

However, using (4.36) we find that

YdR = −2
3
g′ , (4.40)

which exactly yields the values given in Table 1. In the
following, we show that all the other hyper-charges will
also come out correctly, using (4.8), (4.35) and (4.36).
(iii) Right-handed up quark: similarly as before

ūRγ
µD1+3

µ uR

= ūRγ
µ∂µuR +

i
2
g1ūRγ

µBµuR − i
2
g3ūRγ

µuRG
′0
µ − · · ·

= ūRγ
µ∂µuR

+
i
2
(g1 cos δ11′ − g3 sin δ23 sin δ11′)ūRγ

µYµuR

− i
2
g3 sin δ23 sin δ11′ ūRγ

µ[Yµ, uR]� − · · · , (4.41)

from which it emerges that

g1 cos δ11′ − g3 sin δ23 sin δ11′ = YuR , (4.42)

where YuR is the hyper-charge of the right-handed up
quark. Using (4.35) and (4.36), we find

YuR =
4
3
g′ . (4.43)

(iv) Left-handed leptons: for the doublet of left-handed
leptons, we find

Ψ̄ l
Lγ

µD1+2
µ Ψ l

L

= Ψ̄ l
Lγ

µ∂µΨ
l
L +

i
2
g2Ψ̄

l
Lγ

µW
′0
µ Ψ

l
L − i

2
g1Ψ̄

l
Lγ

µΨ l
LBµ

+ · · ·
= Ψ̄ l

Lγ
µ∂µΨ

l
L

− i
2
(g1 cos δ11′ − g2 cos δ23 sin δ11′)Ψ̄ l

Lγ
µΨ l

LYµ

− i
2
g2 cos δ23 sin δ11′ Ψ̄ l

Lγ
µ[Ψ l

L, Yµ]� + · · · , (4.44)

from which we read off the condition

g1 cos δ11′ − g2 cos δ23 sin δ11′ = −YΨ l
L
. (4.45)

Using (4.8), (4.35) and (4.39), from (4.45) we obtain

YΨ l
L

= −g′ . (4.46)

(v) Left-handed quarks: in this case, the relevant coupling
term will read

Ψ̄ q
Lγ

µD2+3
µ Ψ q

L

= Ψ̄ q
Lγ

µ∂µΨ
q
L +

i
2
g2Ψ̄

q
Lγ

µW
′0
µ Ψ

q
L − i

2
g3Ψ̄

q
Lγ

µΨ q
LG

′0
µ

+ · · ·
= Ψ̄ q

Lγ
µ∂µΨ

q
L

+
i
2
(g2 cos δ23 − g3 sin δ23) sin δ11′ Ψ̄ q

Lγ
µYµΨ

q
L

+
i
2
g3 sin δ23 sin δ11′ Ψ̄ q

Lγ
µ[Yµ, Ψ

q
L]� + · · · , (4.47)

which implies that

(g2 cos δ23 − g3 sin δ23) sin δ11′ = YΨq
L
, (4.48)

and, recalling (4.8), (4.35) and (4.39), the hyper-charge of
the left-handed quark doublet in units of g′ is found to be

YΨq
L

=
1
3
g′ . (4.49)

(vi) Higgs doublet: for the last one of the possible charged
particles of our model,

Φ̄γµD2
µΦ

= Φ̄γµ∂µΦ+
i
2
g2Φ̄γ

µW
′0
µ Φ+ · · · (4.50)

= Φ̄γµ∂µΦ+
i
2
g2 cos δ23 sin δ11′Φ̄γµYµΦ+ · · · ,
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implying
g2 cos δ23 sin δ11′ = YΦ , (4.51)

and eventually, with the help of (4.8), (4.35) and (4.39),

YΦ = g′ . (4.52)

Before proceeding with the electro-weak symmetry
breaking, let us recount the number of parameters that
we have introduced. There are three different couplings,
g1, g2 and g3 which correspond to the U�(1), U�(2) and
U�(3) factors, respectively. In addition we have introduced
two mixing angles, δ23 and δ11′ . However, the physical cou-
plings are g2, the weak coupling, g3, the strong coupling
and g′ = 1

2g1 cos δ11′ , the hyper-photon coupling. Also,
there are two relations between the couplings and these
mixing angles:

tan δ23 =
2g2
3g3

, sin δ11′ =
g′

g2

√
1 +

(
2g2
3g3

)2

. (4.53)

Therefore, both of the mixing angles can be expressed in
terms of the physical couplings g′, g2 and g3.

Here we have chosen a specific order for the symmetry
reductions and the Higgsac fields, namely, first we reduced
the U(1) of U�(3) × U�(2) and then the resulting U(1)
with the extra U�(1) that we have in our gauge group.
We would like to comment that the choice of any possible
two Higgsac fields as well as the order of the symmetry
reduction(s) do not change the charge assignments for the
quarks and leptons. (Essentially these charges only depend
on the representations of the particles and the fact that
we start with the U�(3) × U�(2) × U�(1) groups.)

5 The electroweak symmetry breaking

So far, starting from the U�(3) × U�(2) × U�(1) gauge
theory and reducing two U(1) factors, we have arrived
at a theory which can be called NC(SUc(3) × SUL(2) ×
U(1)). In order to complete the formulation of the NCSM,
still we should proceed with the usual symmetry break-
ing through the Higgs doublet. In fact, by this symmetry
breaking, fermions become massive through the Yukawa
terms, which are also allowed in the non-commutative
case. However, a more important role of this symmetry
breaking is to give masses to the W i

µ, i = 1, 2, 3 fields and
also to define the massless photon and massive Zµ through
a combination of Yµ and W 3

µ .
In this section, first we work out the details of this

symmetry breaking in the gauge bosons sector and then in
Sect. 5.2, we present the interaction terms of the fermions
with the physical gauge bosons, as well as the correspond-
ing Yukawa terms. We also compare these interaction
terms with those of the usual standard model.

For performing the electro-weak symmetry breaking,
we use a doublet of scalar fields of the type (4.31), charged
under the U�(2) symmetry group (before the reduction of
the U(1) factors of U�(3)×U�(2)×U�(1)). Practically, after
the U(1) symmetry reduction, this doublet would carry

hyper-charge and weak charge. The new terms occurring
in the full electro-weak Lagrangian before the symmetry
breaking and due to the presence of the doublet of scalar
fields are

LHiggs = (DµΦ)†(DµΦ) + µ2Φ†Φ− f

4!
(Φ†Φ)2� + LYukawa ,

(5.1)
where

LYukawa = heēRΦ
†Ψ l

L + h∗
eΨ̄

l
LΦeR

+ hdd̄RΦ
†Ψ q

L + h∗
dΨ̄

q
LΦdR

+ huūR(Φc)†Ψ q
L + h∗

uΨ̄
q
LΦ

cuR , (5.2)

and he, hd and hu are the respective Yukawa couplings.
In (5.2), Φc is the charge conjugated field of Φ, which
transforms as

Φc → V (x)Φc v−1 . (5.3)

Noting (4.32), the relation (5.3) may seem unusual. How-
ever, we recall that the non-commutative particles, besides
the usual charge, also carry higher-pole charges and in par-
ticular the dipole charge. Therefore, the charge conjugate
of any particle is a particle which is carrying the opposite
of all these higher-pole charges, as well as the charge itself.
In fact, one can check that the charge conjugate of Higgs,
Φc, should transform as (5.3).

One should also note that it is not possible to con-
struct the Yukawa terms in the Lagrangian corresponding
to the U(1) symmetry-reducing Higgsac fields Φ1 and Φ2,
because no gauge-invariant combination of them with the
fermionic fields could exist.

The potential of (5.1) has a minimum at (Φ†Φ)0 =
12µ2

f ≡ φ2
0 and we can choose the vacuum expectation

value for the scalar field to be7

Φ0 =

(
0
φ0

)
. (5.4)

5.1 Symmetry breaking in the gauge bosons sector

Now we discuss the details of the electro-weak symmetry
breaking and its implications on the gauge bosons sec-
tor. To this end, we write the full covariant derivative of
the Higgs field, which is the main ingredient of the mass-
generating term. Having in view (4.10), (4.15) and (4.33),
we obtain

D2
µΦ(x) = ∂µΦ(x)

+
i
2

[
g′Yµ + sin δ23

(
−g2G0

µ +
3
2
g3 cos δ11′W 0

µ

)]
Φ(x)

+
i
2
g2W

i
µσiΦ(x) . (5.5)

7 We note that, since this minimum is x-independent, one
can drop the �-products and hence the minimum-energy solu-
tion is the same as in the commutative case
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Hence, the mass term emerging is of the form of

LM =
{[

(g′Yµ − g2W
3
µ)

+ sin δ23

(
−g2G0

µ +
3
2
g3 cos δ11′W 0

µ

)]2

+ 2g2
2W

+
µ W

−
µ

}
|φ0|2 , (5.6)

where W± = 1√
2
(W 1 ± iW 2).

Following the usual Higgs mechanism, let us identify
the first term in the brackets in (5.6) as being proportional
to Z0

µ; more explicitly

Z0
µ = − sin θ0WYµ + cos θ0WW

3
µ , (5.7)

Aµ = cos θ0WYµ + sin θ0WW
3
µ , (5.8)

where the weak-mixing angle θ0W is defined as in the usual
standard model:

tan θ0W =
g′

g2
. (5.9)

With these notations, we can rewrite (5.6) as

LM =

{[
gZ0

µ + sin δ23

(
−g2G0

µ +
3
2
g3 cos δ11′W 0

µ

)]2

+ 2g2
2W

+
µ W

−
µ

}
|φ0|2 , (5.10)

where
g =

√
g′2 + g2

2 . (5.11)

In (5.10), the mass term for the W± bosons is clearly
singled out:

mW ± = g cos θ0W|φ0| . (5.12)

As we see from (5.10), Z0
µ is not the real physical Z-

boson. The physical Z-particle, which diagonalizes the
above mass Lagrangian, is mixed with the other two mas-
sive gauge bosons, W 0

µ and G0
µ. As a result, we have a cor-

rection to the mass of the physical Z-particle, compared
to the usual standard model. However, still the massless
gauge boson, the photon, is given by (5.8).

In order to compute this correction, we have to take
into account also the mass terms of W 0

µ and G0
µ obtained

during the U(1) symmetry breaking and to diagonalize
the obtained mass matrix. Recalling (4.19) and (5.11), we
can write the mass term for Z0

µ, W 0
µ and G0

µ:

LZWG =
g2

2

{[
Z0

µ + cos θ0W

(
sin δ23G0

µ

− cos δ11′ cos δ23W 0
µ

)]2
|φ0|2+

(
cos2 θ0W
sin2 δ23

φ2
1

)
G02

µ

+
(

cos2 θ0W cos2 δ23
cos2 δ11′

φ2
2

)
W 02

µ

}

≡ g2

2
φ2

0 XtMX , (5.13)

where

X =


 Z0

µ

G0
µ

W 0
µ


 , M =

( 1 a −b
a a2 + d2 −ab

−b −ab f2 + b2

)
,

(5.14)
with

a = cos θ0W sin δ23 , b = cos θ0W cos δ11′ cos δ23 ,

d =
cos θ0W
sin δ23

φ1

|φ0| , f =
cos θ0W cos δ23

cos δ11′

φ2

|φ0| . (5.15)

Since the physical Z-field, Zµ, and Z0
µ should almost

be equivalent, we expect the a and b factors of (5.14) to be
small (compared to d and f). Physically, this is equivalent
to assuming that

mZ

mG0
,
mZ

mW 0
� 1 .

Then, diagonalizing (5.14), the mass for the physical Z-
particle, up to the second order in mZ

mG0
, mZ

mW0
is found to

be

m2
Z = g2|φ0|2

[
1 − sin4 δ23

(
φ0

φ1

)2

− cos4 δ11′

(
φ0

φ2

)2
]
,

(5.16)
and therefore,

m2
W

m2
Z

= cos2 θ0W

{
1 + cos2 θ0W

[(
mZ

mG0

)2

sin2 δ23

+
(
mZ

mW 0

)2

cos2 δ23 cos2 δ11′

]}
. (5.17)

We also note that, using (4.53) and (5.9), we have cos2 δ23
cos2 δ11′ = cos2 δ23 − tan2 θ0W.

Having identified the physical gauge fields: the mass-
less gluons, Ga

µ, a = 1, 2, · · · , 8; the photon, Aµ; the mas-
sive gauge bosons W±

µ , Zµ,W
0
µ and G0

µ, one can rewrite
the action (4.3) in terms of these fields and the corre-
sponding couplings. Although we do not write the lat-
ter down here explicitly, we would like to comment that
in the non-commutative case we have three- and four-
photon interaction vertices, which are not the vertices aris-
ing from a pure U�(1) theory. Besides the differences in the
photon–photon vertices, there exist also photon–Z inter-
action terms which have no counter-part in the standard
model.

5.2 Symmetry breaking in the fermionic sector

In order to pick up the fermionic interaction terms after
the electro-weak symmetry breaking, we shall explicitly
write down the relevant interaction terms of the U�(3) ×
U�(2) × U�(1) Lagrangian separately for the leptonic and
quark sectors.
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For the leptonic sector, using (4.21) and (4.22), we
have

Lleptons = − i
2
g1ēRγ

µeRBµ +
i
2
g2Ψ̄

l
Lγ

µW i
µσiΨ

l
L

+
i
2
Ψ̄ l

Lγ
µ(g2W

′0
µ − g1Bµ)Ψ l

L

− i
2
g1Ψ̄

l
Lγ

µ[Ψ l
L, Bµ]� , (5.18)

and for the quark sector, recalling (4.26), (4.27) and
(4.30),

Lquarks =
i
2
g1ūRγ

µBµuR − i
2
g3ūRγ

µuRG
′0
µ

− i
2
g3ūRγ

µuRG
a
µT

a (5.19)

− i
2
g3d̄Rγ

µdRG
′0
µ − i

2
g3d̄Rγ

µdRG
a
µT

a

+
i
2
g2Ψ̄

q
Lγ

µW
′0
µ Ψ

q
L +

i
2
g2Ψ̄

q
Lγ

µW i
µσiΨ

q
L

− i
2
g3Ψ̄

q
Lγ

µΨ q
LG

′0
µ − i

2
g3Ψ̄

q
Lγ

µΨ q
LG

a
µT

a .

After the reduction of the U(1) factors and the electro-
weak symmetry breaking, from (5.18) and (5.19) we obtain
the following interaction terms.
Leptonic sector. The electron–photon interaction vertex
comes in a form analogous to that of the usual standard
model:

LΨe−γ = −ieΨ̄eγ
µΨeAµ , (5.20)

with e being the coupling. Following the symmetry-break-
ing procedure, we obtain

e = g2 sin θ0W =
1
2
g sin 2θ0W , (5.21)

using (5.9) and (5.11). From this form of the interaction
term, it is clear that the electron is in the anti-fundamental
representation of the residual U�(1) group, described by
the massless gauge field Aµ and corresponding to NCQED.
For the electron–Zµ vertex we have

LΨe−Z0
µ

= ig
[(

−1
2

+ sin2 θ0W

)
Ψ̄eLγ

µZ0
µΨeL

]
+ ig sin2 θ0WΨ̄eRγ

µZ0
µΨeR

+ ig sin2 θ0WΨ̄eγ
µ[Ψe, Z

0
µ]� , (5.22)

where the first two terms are of the same form as in the
usual standard model. However, still one should keep the
following in mind.
(1) Actually what appears in the interaction terms (5.22)
is Z0

µ and not the physical Z-particle. Hence, these terms
also generate extra interaction terms between electron and
G0 and W 0 massive gauge bosons.
(2) Still one should be careful with the order of the fields,
due to the �-product.

In particular, we note the Moyal bracket term; indicat-
ing that the non-commutative electron besides the usual Z

charge also couples to the derivatives of Z−µ. In the first
order in θµν , basically this is a weak-dipole–Z interaction.
For the electron–neutrino–W±

µ interaction term we have

LΨe−ν−W ±
µ

= i
√

2g2(ν̄γµW+
µ ΨeL + Ψ̄eLγ

µW−
µ ν) , (5.23)

which, apart from the �-products between the fields, is the
same as that of the usual neutrino–photon interaction.

For this we have

Lν−γ = −ieν̄γµ[ν,Aµ]� , (5.24)

which is a completely new interaction, realized through
the neutrino dipole moment. We will elaborate more on
this interaction term and its physical consequences in the
next section.

For the neutrino–Zµ interaction we have

Lν−Z0
µ

=
i
2
gν̄γµZ0

µν + ig sin2 θ0Wν̄γ
µ[ν, Z0

µ]� , (5.25)

where the first term is of the same form as in the standard
model. However, the second term is a result of the fact
that the non-commutative neutrino also carries Z-dipole
moment.
Quark sector. For the up quark–photon interaction we
have

Lu−γ =
2i
3
eūγµAµu− i

3
eūγµ[u,Aµ]� . (5.26)

As we see, the up quark besides a simple insertion of the
�-product also involves another Moyal bracket term. This
extra term which is basically coming from the fact that the
up quark is non-singlet under the two group factors (4.25)
and (4.29), has an interesting consequence: the electric
dipole moment of the up quark is twice more than what
is expected from naive NCQED. To see this let us expand
(5.26) in powers of θµν . Up to the first order we have

Lu−γ =
2i
3
eūγµAµu− 2

3
eūγµ (θαβ∂αAµ∂βu) + O(θ2) .

(5.27)
Recalling the arguments of [21], one expects to find 1

3 for
the coefficient of the second term, while what we obtain
is 2

3 .
For the down quark–photon interaction we have

Ld−γ = − i
3
ed̄γµdAµ . (5.28)

This is exactly what one expects from a naive extension
of QED to NCQED, by insertion of �-products.

For the up quark–Zµ interaction we have

Lu−Z0
µ

= ig
(

1
2

− 2
3

sin2 θ0W

)
ūLγ

µZ0
µuL

− ig
2
3

sin2 θ0WūRγ
µZ0

µuR

+ ig
1
3

sin2 θ0Wūγ
µ[u, Z0

µ]� . (5.29)
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Up to the difference in the �-products (not written explic-
itly according to our convention), the first two terms are
the same as in the usual standard model, while the third
term is again showing the weak higher-pole moments of
the non-commutative up quark.

For the down quark–Zµ vertex we have

Ld−Z0
µ

= ig
(

−1
2

+
1
3

sin2 θ0W

)
d̄Lγ

µZ0
µdL

+ ig
1
3

sin2 θ0Wd̄Rγ
µZ0

µdR

+ ig
1
3

sin2 θ0Wd̄γ
µ[d, Z0

µ]� . (5.30)

For the up quark–down quark–W±
µ interaction we have

Lu−d−W ±
µ

=
i√
2
g2(ūLγ

µW+
µ dL + d̄Lγ

µW−
µ uL) . (5.31)

6 Some specific features of NCSM

In the previous section, we worked out in detail the fer-
mions–gauge bosons interaction terms in the NCSM. In
general, one can classify the new ingredients of the NCSM
in two sets. First there are those coming from the group
theoretical structure of the model and which do not de-
pend on the non-commutativity parameter explicitly. This
set is mainly a consequence of having two extra massive
gauge bosons, G0

µ and W 0
µ . Although we did not present

it, almost all the fermions interact with the new mas-
sive gauge bosons, G0

µ and W 0
µ . Such interaction terms

effectively will give rise to Fermi’s four-fermion interac-
tion, where its coupling (up to some numeric factors) is

GF

(
mZ

mW0

)2
. Another important effect of these new mas-

sive gauge bosons is the correction to the physical Z-
particle, and in particular to its mass. We will discuss
this in detail in Sect. 6.2 and in this way we impose some
lower bounds on the masses of these new massive gauge
bosons.

The second class of new features in the NCSM are the
interaction terms coming from the �-product and (at least
at the classical level) in the commutative limit, i.e. θ → 0,
they vanish explicitly. In other words, all the particles, be-
sides the usual charge, up to the first order in θµν , also
carry a dipole charge which is proportional to the non-
commutativity parameter [21,31]. From these new inter-
action terms here we discuss that of the neutrino–photon
coupling and from this we obtain a lower bound on the
non-commutativity scale.

6.1 Neutrino dipole moment

As we have explicitly shown in the previous section, and
in particular in (5.24), the neutrino in the NCSM under-
goes a new type of interaction: the neutrino–photon ver-
tex. Unlike all the other photon–fermion interactions in

the NCSM, this vertex is a chiral one, i.e. the only exist-
ing neutrino, the left-handed ν, appears in this interaction
term. More precisely, in the non-commutative case, we do
not necessarily need a right-handed neutrino to have a
coupling to the electro-magnetic field, and therefore the
neutrino, without being massive, can carry dipole charges.

On the other hand, there are very strong (astrophys-
ical) bounds on the neutrino–photon interactions and es-
pecially the neutrino dipole moment [35]. In fact, these
bounds can be translated to a lower bound on the non-
commutativity scale, ΛNC, defined by

θµν =
1

Λ2
NC

εµν , (6.1)

where εµν is a dimensionless anti-symmetric parameter,
whose elements are of the order of one.

It is well known that the neutrino has a considerable
effect in the stellar cooling process. However, according
to the standard model, they only participate in the weak
interactions through the massive W± and Z. In this way
any direct photon–neutrino interaction such as the one we
have here can speed up the cooling process, which in turn
will change the whole stellar evolution. To avoid drastic
changes in this respect (which have not been observed)
the strength of the neutrino–photon interaction should be
smaller compared to that of Z. To materialize the above
argument, let us expand (5.24) up to the first order in θµν :

Lν−γ = −ieν̄γµ[ν,Aµ]� = −e ν̄γµ (θαβ∂αAµ∂βν)+O(θ2) .
(6.2)

As we see, in the above interaction the derivative of the
neutrino appears (as well as that of the photon field Aµ).
Then, one can read off the effective neutrino non-commu-
tative dipole moment:

dν = e
1

Λ2
NC

Eν , (6.3)

where Eν is the energy of the neutrino. For the case at
hand, the solar neutrino problem, Eν � 10 MeV and the
corresponding bound on the magnitude of the dipole mo-
ment is [32]

dν � 0.1 × 10−10 µB , (6.4)

where µB = e�

2mec is the Bohr magneton8. Therefore, one
can readily obtain the lower bound on the non-commu-
tativity scale

ΛNC � 103 GeV . (6.5)

Of course, this bound is based on a rough estimate and a
more detailed calculation and a survey can improve this
bound. Also we note that this bound is of the same order
as the previous bounds coming from the Lamb shift [21]
and the Lorentz-violation considerations [25].

8 In fact this bound is coming from consideration of the red
giant star’s cooling process. There are some weaker and also
stronger bounds on the neutrino dipole moment coming from
some other sources. Since in our model we do not have right-
handed neutrinos we cannot use the stronger bound of 10−13µB
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Table 2. Standard model predictions for ε variables, at mH =
113 GeV

εi × 10+3 mt = 174.3 − 5.1 mt = 174.3 mt = 174.3 + 5.1

ε1 5.1 5.6 6.0
ε2 −7.2 −7.4 −7.6
ε3 5.4 5.4 5.3

6.2 Corrections to the weak-mixing angle

As we have discussed previously in Sect. 5, the physical Z-
particle, which is an eigen-state of the mass matrix after
the electro-weak symmetry breaking, besides the W 3

µ and
the hyper-photon Yµ, now receives a contribution from
the other two new massive gauge bosons, G0

µ and W 0
µ ,

while the photon field is only made out of W 3
µ and Yµ,

in such a way that at the end Zµ and the photon field
Aµ are orthonormal states. However, as we have explicitly

shown, these contributions are suppressed by the
(

mZ

mW0

)2

ratio, (5.16). On the other hand, the W± gauge bosons
remain the same as in the usual standard model, W±

µ =
1√
2
(W 1

µ ± iW 2
µ). Therefore, the mZ

mW
ratio now receives a

correction, as indicated in (5.17). We remind the reader
that the weak-mixing angle θ0W is still defined through the
ratio of hyper-photon coupling and weak coupling: g′

g2
=

tan θ0W.
In the usual standard model, although the parameter

ρ =
(
mZ

mW

)2

cos2 θ0W

at the classical (tree) level is equal to one, it receives quan-
tum (loop) corrections; see e.g. [33]. In fact, one of the
precision tests of the standard model is to evaluate these
corrections to ρ and compare them to the corresponding
experimental data [33,34]. Here we use the conventions
and notations of [33] to parameterize these corrections:(
mZ

mW

)2

=
(
mZ

mW

)2
∣∣∣∣∣
B

(1 + 1.43ε1 − 1.00ε2 − 0.86ε3) ,

(6.6)

where the εi show the “large” asymptotic contributions,
up to the leading linearized approximation and(

mZ

mW

)2
∣∣∣∣∣
B

= 0.768905

is the Z and W mass ratio in the Born approximation.
With the latest data used in [34], the predicted values of
the ε variables in the usual standard model, which do de-
pend on Higgs and top quark masses, are given in Table 2.
However, the observed values of the εi obtained from all
combined hadronic, leptonic and Higgs measurements are

ε1 = (5.4 ± 1.0) × 10−3 ,

ε2 = (−9.7 ± 1.2) × 10−3 ,

ε3 = (5.4 ± 0.9) × 10−3 . (6.7)

Comparing the standard model results and the observed
values (6.7), the non-commutative corrections should be
smaller than the difference between these two values. More
explicitly,

cos2 θ0W

[(
mZ

mG0

)2

sin2 δ23 +
(
mZ

mW 0

)2

cos2 δ23 cos2 δ11′

]

� (2.014 ± 3.404) × 10−3 . (6.8)

On the other hand,

tan δ23 =
2
3

√
αQED

αs

1
sin2 θ0W

∣∣∣∣∣
mZ

= 0.354 , (6.9)

where in the above we have used the data given in [35]9.
Now, if we assume that mG0 � mW 0 , we can find a lower
bound on mG0 :

mG0 � 2.5 × 10 mZ . (6.10)

7 Outlook

In this work we have constructed the non-commutative
version of the standard model (NCSM). Mainly, the
present article is devoted to presenting the formulation in
which the obstacle against such a non-commutative ver-
sion of the standard model has been overcome. We have
classified these problems and obstacles in three categories;
however, the most important one was the charge quantiza-
tion problem. We have discussed how this problem can be
resolved, while respecting the no-go theorem stating that
matter fields cannot carry more than two kinds of charges
[1]. In fact, as we have shown, only the matter content as
in the usual standard model (including Higgs) is allowed
in a non-commutative extension. Our recipe to remove
these problems is based on the reduction of the extra U(1)
symmetries through the Higgs mechanism (and Higgsac
fields), in which the residual massless U(1) field becomes
a linear combination of the original U(1) fields, (4.16).
The detailed discussion of the results in the 0-order in θ,
compatible with the observed values for (hyper-) charges,
is given in the appendices. We postpone the complete so-
lution (to all orders in θ) of the U(1) sub-groups reduction
to a future work.

Actually, here we have just introduced the NCSM at
the classical level and mainly in the leading order in θ
and we have not explored all the possible new features
of the NCSM. These are open questions to be studied in
future works. However, among the new features we have
briefly discussed, the neutrino dipole moment is a natural
out-come of our model. This dipole moment interaction
imposes a lower bound on the non-commutativity scale:

ΛNC � 103 GeV . (7.1)

9 Using the relations defining δ11′ we find that sin2 δ11′ =
tan2 θ0

W
cos2 δ23

= 0.3383
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We have discussed that there are corrections to the
m2

W

m2
Z

ratio, which do depend on the masses of the extra
gauge bosons. Using the experimental bounds [33,34], we
have found the lower bound on the masses of these gauge
bosons:

mW 0 , mG0 � 25 mZ . (7.2)

As we see, the bounds on all the three dimensionful
parameters of our theory, ΛNC,mW 0 and mG0 are of the
order of 1–10 TeV.

The other direct consequence of our model is the inher-
ent CP violation, which is in both the leptonic (including
neutrinos) and quark sectors and is controlled by the non-
commutativity parameter, θµν .

On the NCSM, there are a few other remarks in order.

(1) Most of our arguments for constructing the model in
Sects. 3, 4 and 5 do not depend on the details of the �-
product we have used and only having a non-commutative
(but associative) product would lead to the same conclu-
sion.
(2) On anomaly cancellation: it is well known that an im-
portant theoretical consistency check for the usual stan-
dard model (as a chiral gauge theory) is the cancella-
tion of the triangle anomaly. In fact, this anomaly can-
cellation is a consequence of the details of matter con-
tent and corresponding charges. In the non-commutative
case, the anomaly calculations have been already done in
[36]. According to these works a non-commutative gauge
theory, in order to be anomaly free, should be vector-
like. Hence, a non-commutative version of the standard
model is incurably sick. However, along with the argu-
ments of [37], the mixed anomalies (those which are of
the form of U�(n) − U�(n) − U�(m), m �= n and also
U�(1) −U�(2) −U�(3)) are not present. Furthermore, our
theory in the U�(3) sector is vector-like. Although it is
not clear how, we believe that the other two anomalous
diagrams ((U�(1))3 and (U�(2))3) can be removed. One
possible way, among others, as discussed in [37] can be
making the supersymmetric version of NCSM. We hope
that using the effective NCSU(n) groups defined here we
can solve the anomaly problem. We postpone a full anal-
ysis of the anomaly problem to future works.
(3) On quarks mixings: although we have not considered
them here, the usual quarks mixings are also possible in
the NCSM. If we only consider the usual unitary CKM
mixing matrix (whose entries are constant and not space-
time functions), the non-commutative effects will appear
only at the loop level. (The non-commutativity appears
as some overall phases in the amplitudes and hence in the
probability and cross sections it will disappear.)
(4) On neutrino mass and mixing: in our model, neutrinos
are massless, however, we can add masses and mixings. Ac-
cording to the no-go theorem, since we have exhausted all
six possibilities for particles carrying any kind of charge,
we cannot have a right-handed neutrino which carries a
charge. Hence, the right-handed neutrino could only be
a sterile neutrino, i.e. a singlet under all the U�(1), U�(2)
and U�(3) factors and could appear only through the mix-
ing with active neutrinos, or it could be a dipole of one of

the group factors, among which the most plausible is the
U�(1) factor, i.e. νR → vνRv

−1.
Finally, as an immediate check for our model, one

should examine the running of the non-commutative pho-
ton coupling, and as we have discussed, there is a reason-
able hope to resolve the negative β-function problem of
NCQED mentioned in [2].

Note added: After this paper was submitted to the hep-
archive (hep-th/0107055), another very interesting work
with the same main subject, by X. Calmet, B. Jurco, P.
Schupp, J. Wess and M. Wohlgennant has appeared [38].
In this work and also its follow-ups [39], the construc-
tion of the NCSM is based on the Seiberg–Witten map
and it essentially differs from our approach in the fact
that the internal symmetries are considered at the level of
the algebra, while in our case they are considered at the
gauge-group level. It is indeed very interesting to find and
account for the different effects emerging from these two
different approaches.
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of Finland under the Project Nos. 163394 and 54023 is greatly
acknowledged. The work of P.P. was partially supported by
VEGA project 1/7069/20.

Appendix

A Normal sub-groups of U�(n)

Let A� be the Lie algebra of functions on the Moyal plane
generated by the commutators. For any k = 0, 1, . . ., we
define recursively

A�
k+1 = {A�

k,A�}MB , A�
0 ≡ A� . (A.1)

Any f(x) ∈ A� is a power series in θµν ; the set A�
k is

formed by power series starting with the kth power. The
set of sub-algebras A�

k, k = 0, 1, . . ., form a filtration of
the Moyal plane: Ak

�Am
� ⊂ Ak+m

� .
The gauge algebra B = u�(n) is defined as the follow-

ing set of matrix functions on A�:

ε(x) = ε0(x)1n + εa(x)T a ≡ εA(x)TA , (A.2)

where T 0 = 1n is the n × n unit matrix and T a, a =
1, . . . , n2 − 1, are n × n Gell-Mann matrices satisfying
the relations TATB = δAB1n + (dAB

C + ifAB
C )TC ; the

εa(x) = ε†a(x) are hermitian functions belonging to the
algebra A� = A�

0.
Let us consider now the commutator algebra B′ =

[B,B]. This is an ideal formed by elements of u�(n) with
ε0(x) ∈ A�

1 and εA(x) ∈ A�. Further, B′′ = [B′,B′] = B′.
These properties of B = u�(n) and B′ = NCsu(n) are
analogous to those valid for the commutative gauge alge-
bras u(n) and su(n).
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Let us note that the sub-algebra u�(1) of elements
(A.2) with ε(x) = ε0(x)1n extends to another ideal un

� (1)
by adding the [u�(1), u�(n)] functions, i.e. un

� (1) is formed
by the elements (A.2) with ε0(x) ∈ A� and εA(x) ∈ A�

1.
Similarly, 1n

� ≡ NCsun(1) = [un
� (1), un

� (1)] is an ideal in
u�(n).

With any ideal in u�(n), we can associate the corre-
sponding factor-algebra:

un(1) := u�(n)/NCsu(n) , su(n) := u�(n)/un
� (1) .

(A.3)
The ideal un(1) is formed by equivalency classes: ε(x) ∼
ε′(x) if ε(x) − ε′(x) ∈ NCsu(n). However, any element of
u�(n) can be uniquely written in the form ε(x)=ε0(x)1n+
δ1(x) with θ-independent ε0(x) ∈ A (here A ≡ A� \ A�

1 is
the factor-algebra isomorphic to the commutative algebra
of functions) and δ1(x) ∈ NCsu(n). Thus, the elements of
un(1) are uniquely determined by the θ-independent ε0(x),
which themselves form, as conjugacy classes, the local Lie
algebra isomorphic to the usual commutative u(1)-gauge
algebra. Analogous identifications are valid for other cases
in (A.3) too.

The local gauge groups U�(n), NCSU(n), Un
� (1) and

NCSUn(1) are defined by taking the star-exponent of the
corresponding ideal:

U�(n) = {exp[iε(x)], ε(x) ∈ u�(n)} ,
NCSU(n) = {exp[iε(x)], ε(x) ∈ NCsu(n)} , (A.4)

Un
� (1) = {exp[iε(x)], ε(x) ∈ un

� (1)} ,
NCSUn(1) = {exp[iε(x)], ε(x) ∈ 1n

� ]} . (A.5)

The corresponding factor-groups

Un(1) = U�(n)/NCSU(n) , SU(n) = U�(n)/Un
� (1)

(A.6)
are all isomorphic to the usual gauge groups as is indicated
by the notation. Thus, we can write

U�(n) = Un(1) � NCSU(n) = SU(n) � Un
� (1) . (A.7)

The meaning of the first equality is the following: any el-
ement U(x) ∈ U�(n) can be written (non-uniquely) as a
product U(x) = U ′(x) � V (x), where U ′(x) is some repre-
sentant of a given conjugacy class and some element V (x)
from NCSU(n). Alternatively, we can consider U�(n) as a
NCSU(n)-principal bundle over the set U(1) of conjugacy
classes: NCSU(n) → U�(n) → Un(1). More explicitly any
element of U∗(n) can be uniquely written as

U(x, θ) = eiε0(x)1n+iε1(x,θ)1n+iεa(x,θ)T a

�

= eiε0(x)1n � eiε̃1(x,θ)1n+iε̃a(x,θ)T a

� . (A.8)

Here eiε(x) denotes the usual exponent, whereas eiε(x,θ)
� is

the �-exponent. The second factor on the right-hand side
of the second line of (A.8) is an element of the invariant
subgroup NCSU(n) being the �-exponent of elements in
NCsu(n). It follows that the elements of the factor-group
U�(n)/SU�(n) are uniquely specified by the first factor on

the right-hand side. The product of two elements (A.8) is(
eiα0(x)1n � eiα̃1

0(x,θ)1n+iα̃a(x,θ)T a

�

)
�
(
eiβ0(x)1n � eiβ̃1

0(x,θ)1n+iα̃a(x,θ)T a

�

)
= ei(α0(x)+β0(x))1n � e�iγ̃1

0(x,θ)1n+iγ̃0
c (x,θ)T c

, (A.9)

where γ̃1
0(x, θ) and γ̃c(x, θ) depend on all other functions

appearing in the left-hand side, α̃A(x, θ), β̃A(x, θ) as well
as α0(x) and β0(x). However, the U(1) factors specifying
the elements of U�(n)/SU�(n) on left-hand side only de-
pend on α0(x) and β0(x) and the U�(n)/SU�(n) element
on the right-hand side is determined by ei(α0(x)+β0(x))1n .
We see that the factor-group is isomorphic to the usual
commutative local gauge group: U�(n)/NCSU(n)=Un(1).
We stress that in our NCSM construction we have only
used the Un(1) and NCSU(n) sub-groups.

Realization of the U(1) gauge symmetry

The formulas (A.8) and (A.9) induce the one-dimensional
representation π of the U�(n) group:

π(U(x, θ)) = π(eiα0(x)1n+iα1(x,θ)1n+iαa(x,θ)T a

� ) = α0(x) ,
(A.10)

possessing the property

π(eiα0(x)1n+...
� � eiβ0(x)1n+...

� ) = α0(x) + β0(x) . (A.11)

This representation is realized on the gauge potentials

A(x, θ) ≡ AA(x, θ)TA

= A0(x)1n +A1(x, θ)1n + iA0
a(x, θ)T a,

which under U�(n) transforms in the usual way:

A(x, θ) → U(x, θ) � A(x, θ) � U−1(x, θ)
+U(x, θ) � dU−1(x, θ) . (A.12)

It can be seen that under (A.12) the θ-independent part
of the gauge field A0(x) transforms as a usual U(1) gauge
field:

A0(x) → A0(x) + dα0(x) . (A.13)

Then we can require that the θ-independent complex
scalar Higgsac field Φ(x) under (A.12) transform as

Φ → eiqα0(x) Φ(x) , q − constant . (A.14)

We stress that there are no �-products on the right-hand
side! An autonomous Un(1) gauge subsystem can be
desribed by the Higgsac action

S[A0, Φ] =
∫

dx [(D(A0)Φ(x))†(D(A0)Φ(x)) − V (Φ†Φ)] ,

(A.15)
where V (., .) is a convenient Higgs potential and D(A0) =
d + iqA0(x) is the θ-independent Un(1) part of the corre-
sponding covariant derivative affiliated to the (full) gauge
potential A(x, θ).
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Based on the above discussions, the following notes are
in order.
(1) As desired, the Higgsac action S[A0, Φ] is U�(n)-invari-
ant. However, the Higgsac field may interact with other
matter fields only indirectly, via the θ-independent part
A0(x) of the corresponding gauge field.
(2) The charge q of the Higgsac field Φ(x) is unspeci-
fied. Moreover, the Higgsac field may interact with more
(θ-independent parts of) gauge fields with unspecified
charges.
(3) The charges are determined by constant gauge trans-
formations which are a part of the θ-independent fac-
tor of the gauge symmetry. The θ-dependent Un(1) fields
A1

θ(x, θ) do not feel any U(1) charge.
(4) The construction described above can be repeated for
any non-commutative associative algebra of functions pos-
sessing a suitable filtration.

B Symmetry reduction

Let us consider a system with non-commutative gauge
symmetry given as the direct product of two gauge groups:

U�(n) × U�(m) (B.1)
= (Un(1) × Um(1)) � (NCSU(n) × NCSU(m)) ,

where the subscripts of the U(1) factors indicate to which
U�(·) gauge group they belong.

The symmetry reduction consists of replacing the two
independent U(1) factors

Un(1) =
{

exp
[

i
2
ε0n(x)1n

]}
, ε0n(x) ∈ A ,

Um(1) =
{

exp
[

i
2
ε0m(x)1m

]}
, ε0m(x) ∈ A , (B.2)

by a “diagonal” one specified by putting ε0n(x) = 1
nε

0(x)
and ε0m(x) = 1

mε
0(x) with ε0(x) ∈ A:

(Un(1) × Um(1))d

≡
{

exp
[

i
2

(
1
n
1n ⊕ 1

m
1m

)
ε0(x)

]}
(B.3)

=
{

exp
[

i
2n
ε0(x)1n

]}
×
{

exp
i

2m
ε0(x)1m]

}
,

where ε0(x) ∈ A and the symbol ⊕ denotes the direct
sum. In Un(1) we can introduce the determinant by

det
(

exp
[

i
2
ε0n(x)1n

])
= exp

[
i
2
nε0n(x)

]
.

The 1
n factors guarantee that

det
(

exp
[

i
2n
ε0(x)1n

])
= det

(
exp

[
i

2m
ε0(x)1m

])

= exp
[

i
2
ε0(x)

]

is a representation of (Un(1)×Um(1))d. After the symme-
try reduction we are left with the gauge group

(U�(n) × U�(m))d (B.4)
≡ (Un(1) × Um(1))d � (NCSU(n) × NCSU(m))
= (U�(n) × U�(m))/(det(Un(1))d = det(Um(1))d .

In other words, the gauge groups NCSU(n) and NCSU(m)
are not supplemented by two independent factors Un(1)
and Um(1) but only by one diagonal factor (Un(1) ×
Um(1))d containing strictly related factors (Un(1))d and
(Um(1))d with equal determinants.

In the language of gauge fields this means the follow-
ing. Originally, we have two gauge fields An

µ(x) and Am
µ (x)

sharing the gauge transformations of Un(1) = U�(n)/
NCSU(n) and Um(1) = U�(m)/NCSU(m): they can be
identified with the θ-independent parts of the 1n and 1m

components of the U�(n) and U�(m) gauge fields, respec-
tively. Under the Un(1) and Um(1) gauge transformations
they transform as

An
µ(x) → An

µ(x) +
i
2
g−1

n ∂µε
0
n(x)1n , ε0n(x) ∈ A ,

Am
µ (x) → Am

µ (x) +
i
2
g−1

m ∂µε
0
m(x)1m , ε0m(x) ∈ A . (B.5)

After the symmetry reduction (B.2) and (B.3) there is
one θ-independent gauge field Ad

µ(x) sharing the (Un(1)×
Um(1))d gauge symmetry:

Ad
µ(x) ≡ (An

µ(x) ⊕Am
µ (x))d

=
(

g

ngn
1n ⊕ g

mgm
1m

)
Aµ(x) . (B.6)

The θ-independent field Aµ(x) transforms under (Un(1)×
Um(1))d gauge transformations generated by ε0(x) as fol-
lows:

Aµ(x) → Aµ(x) +
i
2
g−1∂µε

0(x) . (B.7)

It is important that (B.5) coincides on (Un(1) × Um(1))d

transformations with (B.6) and (B.7). The constant g is
specified by the equation

1
g2 =

1
n2g2

n

+
1

m2g2
m

(B.8)

(this guarantees the proper normalization of the Aµ-field
term in the Lagrangian).

C Symmetry reduction, fermionic part

In NCSM the symmetry reduction is mediated by a θ-
independent Higgsac field Φ(x) ∈ A possessing (Un(1) ×
Um(1)) transformations:

Φ(x) → u(x)Φ(x)v−1(x) = Φ(x) ,

u(x) = det exp
[

i
2
ε0n(x)1n

]
,

v(x) = det exp
[

i
2
ε0m(x)1m

]
.
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Note that there is no �-product involved in the gauge
transformation of the Higgsac field. However, for the
(Un(1) × Um(1))d transformations Φ(x) → Φ(x) (since
ε0n(x) = 1

nε
0(x), ε0m(x) = 1

mε
0(x), and both phase fac-

tors cancel). Thus, the Higssac field is neutral with re-
spect to the residual gauge field Aµ(x). This is consistent
with the observation that the Φ(x) field covariant deriva-
tive (∂µ+igndetAn

µ(x)−igmdetAm
µ (x)) does not transform

under (Un(1) × Um(1))d gauge transformations.
Let us now consider the matter fields Ψu(x) and Ψd(x)

transforming under a U�(n)×U�(m) gauge transformation
as follows:

Ψu(x) → U(x)Ψu(x)V −1(x) ,
Ψd(x) → Ψd(x)V −1(x) , (C.1)

with U(x) ∈ U�(n) and V (x) ∈ U�(m). Their NCSU(n)×
NCSU(m) orbits are{

U(x)Ψu(x)V −1(x), U(x) ∈ NCSU(n), (C.2)

V (x) ∈ NCSU(m)
}
,

{Ψd(x)V −1, V (x) ∈ NCSU(m)} .
This means that if ψu(x) and ψd(x) are representatives of
the classes in question, then

Ψu(x) = U(x)ψu(x)V −1(x) , Ψd(x) = ψd(x)V −1(x) ,
(C.3)

with U(x) ∈ NCSU(n) and V (x) ∈ NCSU(m). The fields
ψu(x) and ψd(x) transform under the Un(1)×Um(1) gauge
transformation (B.5) as follows:

ψu(x) → exp
[

i
2
ε0n(x)1n

]
ψu(x) exp

[
− i

2
ε0m(x)1m

]
,

ψd(x) → ψd(x) exp
[
− i

2
ε0m(x)1m

]
. (C.4)

Restricting (C.4) to (Un(1) ×Um(1))d transformations by
putting ε0n(x) = 1

nε
0(x) and ε0m(x) = 1

mε
0(x) we find that

the orbits transform as

ψu(x) → exp
[

i
2n
ε0(x)1n

]
ψu(x) exp

[
− i

2m
ε0(x)1m

]
,

ψd(x) → ψd(x) exp
[
− i

2m
ε0(x)1m

]
. (C.5)

Comparing this with (B.7) we see that they possess frac-
tional Aµ-field charges:

qu =
g

n
− g

m
, qd = − g

m
. (C.6)

This is the solution of the fractional charge mystery
in NC QFT: they appear as charges of the θ-independent
residual gauge field Aµ(x) which transforms like a com-
mutative U(1) gauge field and can interact with the fields
ψu(x) and ψd(x) possessing fractional charges. We can
extend this as follows. The fields Ψu(x) and Ψd(x) them-
selves, and not only ψu(x) and ψd(x), possess the frac-
tional charges qu and qd given above. This is reasonable,

since charges are determined by global transformations
with ε0(x) = const, and (C.5) and (C.6) with constant
ε0(x) are valid directly for the matter fields Ψu(x) and
Ψd(x). The exact values of charges given in (C.3) can be
read directly from the field transformation law (C.3). This
simple rule is valid for any field.

We note that these are exactly the formulas discussed
in Sects. 3 and 4. For example, the formula for the charge
of Ψu(x) given there (qu = 1

2 (gn cos δnm − gm sin δnm),
tan δnm = ngn/mgm) is identical to (C.6). However, the
motivation presented here is “kinematical”; being based
only on symmetry considerations, the symmetry-reducing
part of the Lagrangian is not specified. We see that the
symmetry reduction is related only to the θ-independent
parts of fields sharing the corresponding commutative
Un(1) × Um(1) factor-group symmetries.
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